

Experience of transfusional processings by Erythrapheresis in Adults Sickle Cell Center of Martinique

Gylna LOKO
Centre de référence de la Drépanocytose
gylna.loko@gmail.com

Sickle Cell Disease

- Advances in care
- Improvement of quality of life and aging population
- Systemic disease
 - Acute and chronic complications: VOC, Infections, ACS, Stroke, Priapism, Leg ulcers, Retinopathy, Joints complications, Organ failures: renal, cardiac, liver ...

Therapeutics

- Early diagnosis since 1984
- Early prevention
- Therapeutic disease education
- Hydroxyurea
- Erythropoietin

....

Bone marrow transplant

Therapeutics

- Early diagnosis since 1984
- Early prevention
- Therapeutic disease education
- Hydroxyurea
- Erythropoietin

.....Bone marrow transplant

And Transfusion

Transfusion treatment

Always case by case approach

Transfusion file

- Systematically at the beginning
 - Group ABO
 - Phenotype Rhesus, Kell
 - Systematic extended phenotype

- RBC bag = leukodepleted, Rhesus Kell phenotyped and compatibilised
- +++, If alloimmunisation
 More similitude in Martinique between patients and donors)

Simple transfusion

- Indication = Worsening of a poorly tolerated anemia
 - o Clinical
 - o Reticulocytes rate
- Goal = Hb + Oxygen delivery

Transfusional Exchange

- Goal= replace the sickle erythrocytes by red blood cells containing Hb A
 - o Decrease of %HbS
 - Avoid hyperviscosity
 - Delayed iron overload
- A Never Hb should exceed 10 to 11 G/dL

Red Blood cell exchange: 2 techniques

Manual Exchange: combination of phlebotomy and transfusion

Automated Exchange with an apheresis device

Red Blood cell exchange

Manual Exchange	<u>Erythrapheresis</u>	
Whole blood phlebotomy + transfusion	Elective subtracting of RBC Replacement by RBC Plasma restitution	
1 or 2 venous access	2 good venous access	
Limited volume	Ability to treat large blood volume	
Hypovolemia risk	Constant hematocrit and volemia	
Hyperviscosity risk	Viscosity controlled (Ht)	
Ineluctable iron overload	No iron overload	
No sophisticated equipment	But sophisticated material	
Very time consuming	More comfortable for patients and nurses	

Exchange indications Punctual and Curative

- Stroke
- Acute Chest Syndrome
- Hepatic sequestration
- VOC hyperalgic not yielding to major analgesics> 5 to 8 days
- Acute Priapism: Etilefrine Failure and/or > 3 h
- Multi organ failure

Blood Exchange transfusion indications Punctual and Preventive

- Preparation for surgery
- Cerebral Arteriography
- Pregnancy with severe sickle cell and/or obstetric history

Blood Exchange Transfusion indications Long term

- Stroke: Primary prevention (cerebral vasculopathy)
- Stroke: secondary prevention
- Recurrent VOC and ACS if Hydroxyurea not tolerated
- Chronic organs failure: PAH, Kidneys, Heart, Liver
- Recurrent Priapism treatment-resistant
- Recurrent and rebel leg ulcers: less efficacy, but less painful
- Prevent secondary hemochromatosis (erythrapheresis)

Manual exchange Phlebotomy + Transfusion

- 3 phases
 - Phlebotomy 10ml/kg (5ml/kg in case of stroke)
 - Phlebotomy continuated and start of the transfusion
 - Transfusion alone

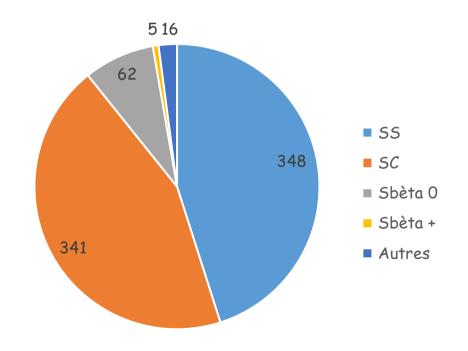
Initial Hematocrit	First Bleeding volume	Seconde Bleeding volume	Transfusion
< 7 g/dl	0	0	2 à 3 <i>CG</i>
7.5	0	0 à 150 ml	2 à 3 <i>CG</i> (900 ml)
8	0	200 ml	2 CG (600ml)
8.5	0	250 ml	2 CG
9	200 ml	200 ml	2 CG
9.5	200 ml	250 ml	2 CG
10	250 ml	300 ml	2 <i>CG</i>
10.5	300 ml	300 ml	2 CG
11	300 ml	350 ml	2 <i>CG</i>
11.5	350 ml	350 ml	2 CG
12	350 ml	400 ml+/- 1 saignée le lendemain	2 CG

Experience from ASCDC - Martinique

CRD-Adultes Martinique (1)

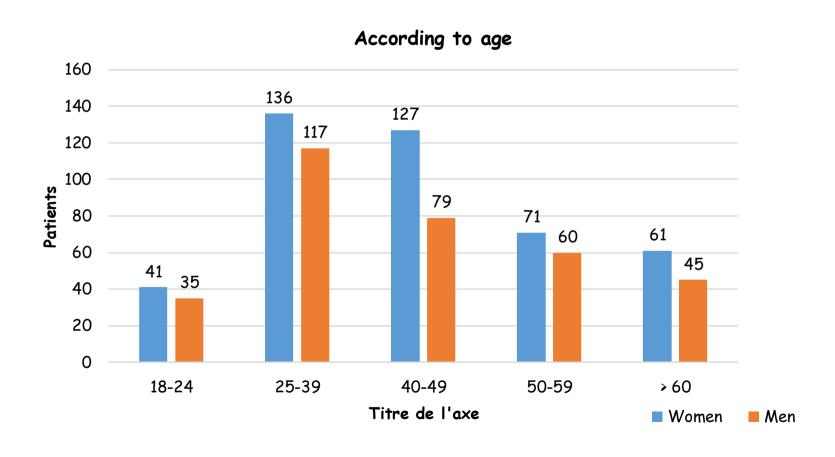
At March 30, 2016

772 patients

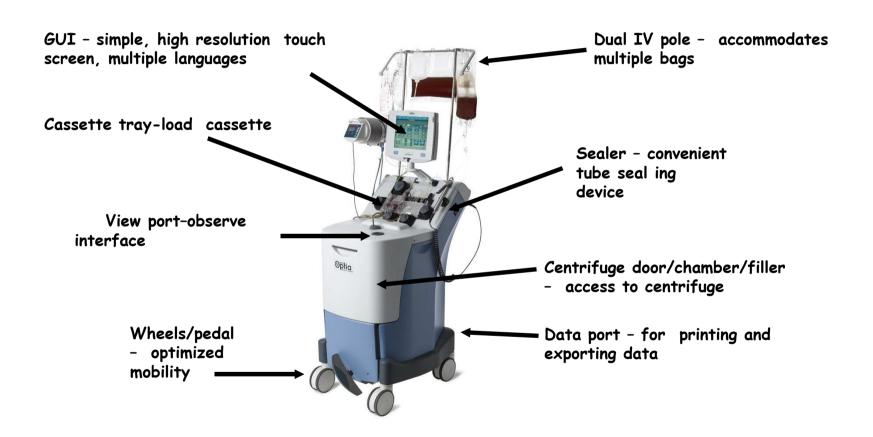

o 348 Hb SS: 45,08%

o 341 Hb SC: 44,17%

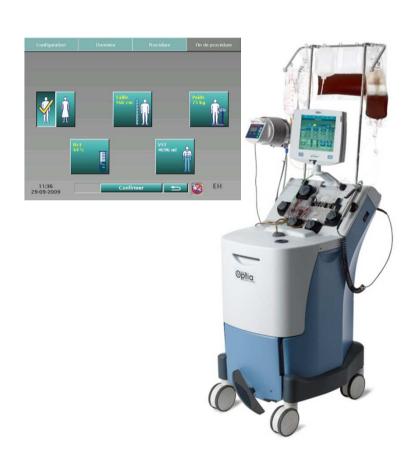
5 Sβ₀Thal: 0,6%


Hb ASAntilles, SDKorlebu,SOArab, SDPunjab ...

According to genotype



CRD-Adultes Martinique (2)


Spectra Optia Apheresis System

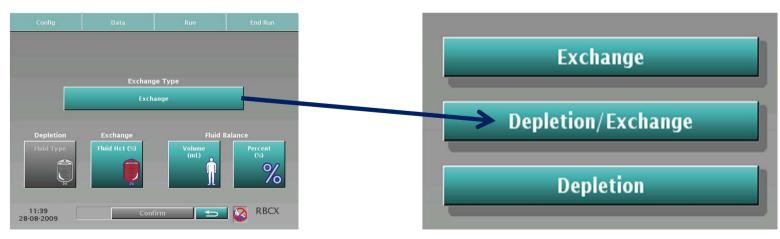
Automated Red Blood Cell Exchange

- Apheresis device: Spectra Optia / Terumo BCT
- Specific software
 - Patient parameters
 - · Weight
 - Height
 - Ht
 - HbS (%)
 - Blood bag hematocrit is needed
- FCR: Residual level of HbS (%)



Pre transfusion Assessment

- 48 to 72 hours before
- Complete Blood Count+ Retic., HbS count, Calcemia, Ferritin
- Available RBC volume
- Order of 4 to 5 RBC bags, 7 to 8 in case of emergency
- Mean of 20 to 30 ml/kg for iterative exchanges
- 50 ml/kg for top up exchange

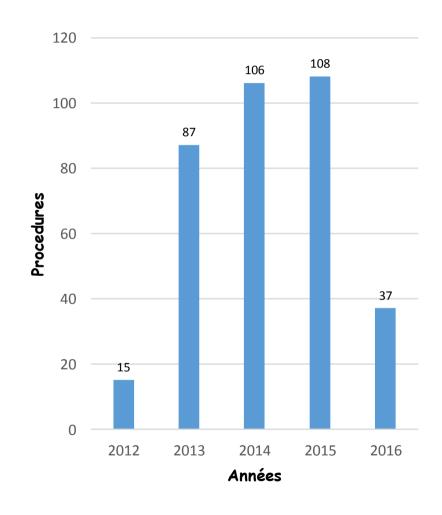


Procedures

- Duration of the procedure depends on the quality of venous access
 - In our ward: Peripheral venous access +++, 3 fistula, 2 fistula failure
- Depletion + Exchange: if Ht > 26-27% + Hb S (%)
 «favorable »

Post transfusionnel Assessment

At least 1 hour after the end of the erythrapheresis CBC, HbS



Since October 2012

More than 8 procedures/month

353 P./51 patients

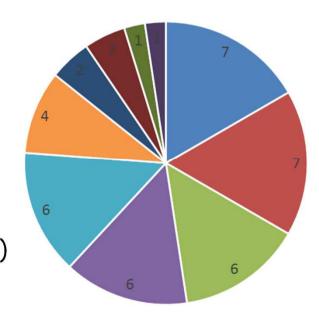
- 2012: **15** Procedures
- 2013: **87** P.
- 2014: **106** P.
- 2015: **108** P.
- At 25 April 2016: **37** P.

Indications (1)

Prior Manual Exchange 12 patients/15

- 4 patients with fistula
- (+ 3 with difficult venous access)

Indications (3) Punctual procedures


- Pre Valvuloplasty: 2 Procedures / 2 patients
- In ICU
 - Stroke : 4 Procedures / 2 patients
 - ACS: 2 Procedures / 2 patients (1 Hb SC)
 - \circ VOC: 2 Procedures / 2 patients (1 Hb S β_0 Thal)
 - o Priapism = 1 Procedure/ 1 patient

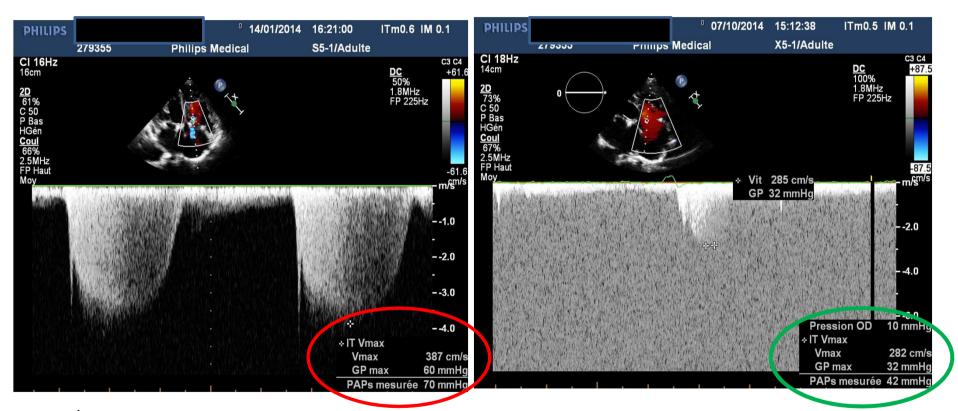
Indications (4) Iterative procedures: 37 p.

- VOC and/or failure or "waiting" Hydroxyurea: 7 patients
- Pregnancy: **7** (3 Hb SC)
- Cerebral Vasculopathy/Stroke : 6
- •PAH: 6 (1 Hb SC)
- Multi organ failure: 6
- Renal failure: 4 (1 Hb SC)
- Liver failure: 2 (Hb Sp+thal)
- Leg ulcers: **2** (1 HbSC)
- Desire for children: 2 (Stop Hydroxyurea)
- Post liver tranplant: 1
- Priapism: 1 patient

Nombre de Patients

Availability of the apheresis device and...

- Patients
 - o Good venous access
 - o Incentive, Information regarding fistula
- Nurses
- Physicians
- Device Failure fear


Benefits

- Stroke: No recurrence
- Known positive effects of automated RBC exchange
- Hemochromatosis
 - 4 patients with iron overload treated with chelation therapy (DFO) because of liver and renal failure: Ferritin between 2788 and 3400 mg/ml → 452 and 633 within 21 to 30 months
 - → Chelation therapy can be stopped
- Targeted HbS reached
- PAH: 8 months

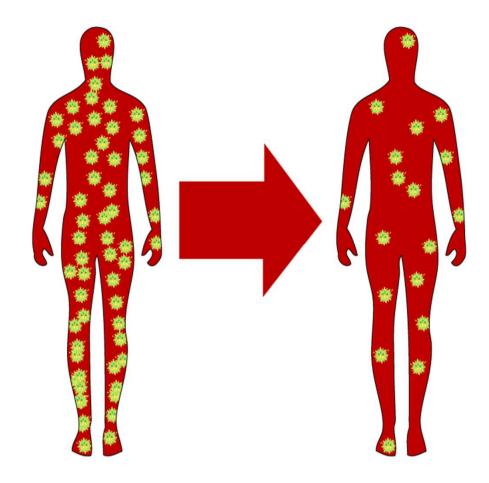
Initial progressive HTAP confirmed on Central line

Exchange started in february 2014 HbS = 35%, 07/10/2014

- ↓ Tricuspid leak 387 to 282 cm/s
- ↓ PAPs mesured 70 to 42 mm Hg

Questions which remain

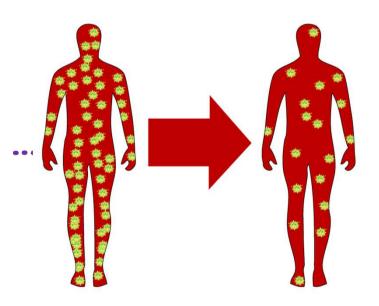
- Lower Risk of alloimmunisation? Less noisy?
- Alloimmunisation article
 - Michot, F. Driss et al,Transfusion, 2014


Patients feeling impact Nurses feeling impact

Conclusion 1

 TRANSFUSION = unquestionable major therapeutic in some situations

- Effective Technique
 - decreased %HbS
 - long-term treatments avoided for iron overload



Conclusion 2

- Stop chelation?
- RBC bags use (punctual, long term)
- Targeted Ht: device/laboratory
- HbS low rate achieved

• Venous access : Fistula,

Thanks

- R. IFRIM, MD
- S. ALEXIS-FARDINI, MD
 L.HAUSTANT-ANDRY, MD

Special thanks

- The entire center team
- Patients, their families et helpers

- Françoise DRISS
- M. B.
- Y.A., J.I.
- P.B.

Thanks for your attention